
“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page i

−1
0
1

Foundations of 3D Computer Graphics



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page ii

−1
0
1



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page iii

−1
0
1

FOUNDATIONS OF 3D COMPUTER GRAPHICS

Steven J. Gortler

The MIT Press
Cambridge, Massachusetts
London, England



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page iv

−1
0
1

© 2012 Steven J. Gortler

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press,
55 Hayward Street, Cambridge, MA 02142.

This book was set in Syntax and Times Roman by Westchester Book Group. Printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

10 9 8 7 6 5 4 3 2 1



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page v

−1
0
1

To A.L.G., F.J.G, and O.S.G.



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page vi

−1
0
1



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page vii

−1
0
1

Contents

Preface xiii

I GETTING STARTED 1

1 Introduction 3
1.1 OpenGL 3

Exercises 8

2 Linear 9
2.1 Geometric Data Types 9
2.2 Vectors, Coordinate Vectors, and Bases 11
2.3 Linear Transformations and 3 by 3 Matrices 12
2.4 Extra Structure 15
2.5 Rotations 17
2.6 Scales 19

Exercises 20

3 Affine 21
3.1 Points and Frames 21
3.2 Affine Transformations and 4 by 4 Matrices 22
3.3 Applying Linear Transformations to Points 24
3.4 Translations 25
3.5 Putting Them Together 25
3.6 Normals 26

Exercise 28

4 Respect 29
4.1 The Frame Is Important 29
4.2 Multiple Transformations 31

Exercises 33

5 Frames in Graphics 35
5.1 World, Object, and Eye Frames 35
5.2 Moving Things Around 36



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page viii

−1
0
1

viii Contents

5.3 Scales 39
5.4 Hierarchy 40

Exercises 43

6 Hello World 3D 45
6.1 Coordinates and Matrices 45
6.2 Drawing a Shape 46
6.3 The Vertex Shader 51
6.4 What Happens Next 52
6.5 Placing and Moving with Matrices 53

Exercises 54

II ROTATIONS AND INTERPOLATION 57

7 Quaternions (a Bit Technical) 59
7.1 Interpolation 59
7.2 The Representation 63
7.3 Operations 64
7.4 Power 65
7.5 Code 68
7.6 Putting Back the Translations 68

Exercises 72

8 Balls: Track and Arc 73
8.1 The Interfaces 73
8.2 Properties 74
8.3 Implementation 75

Exercise 75

9 Smooth Interpolation 77
9.1 Cubic Bezier Functions 77
9.2 Catmull–Rom Splines 80
9.3 Quaternion Splining 82
9.4 Other Splines 82
9.5 Curves in Space 83

Exercises 85

III CAMERAS AND RASTERIZATION 87

10 Projection 89
10.1 Pinhole Camera 89
10.2 Basic Mathematical Model 91
10.3 Variations 92
10.4 Context 98

Exercises 98



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page ix

−1
0
1

Contents ix

11 Depth 101
11.1 Visibility 101
11.2 Basic Mathematical Model 102
11.3 Near and Far 105
11.4 Code 107

Exercises 108

12 From Vertex to Pixel 109
12.1 Clipping 109
12.2 Backface Culling 113
12.3 Viewport 114
12.4 Rasterization 116

Exercises 118

13 Varying Variables (Tricky) 119
13.1 Motivating the Problem 119
13.2 Rational Linear Interpolation 121

Exercises 123

IV PIXELS AND SUCH 125

14 Materials 127
14.1 Basic Assumptions 127
14.2 Diffuse 130
14.3 Shiny 131
14.4 Anisotropy 133

Exercise 136

15 Texture Mapping 137
15.1 Basic Texturing 137
15.2 Normal Mapping 139
15.3 Environment Cube Maps 140
15.4 Projector Texture Mapping 141
15.5 Multipass 144

Exercise 148

16 Sampling 149
16.1 Two Models 149
16.2 The Problem 150
16.3 The Solution 150
16.4 Alpha 155

Exercise 160

17 Reconstruction 161
17.1 Constant 161
17.2 Bilinear 162



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page x

−1
0
1

x Contents

17.3 Basis Functions 163
Exercises 165

18 Resampling 167
18.1 Ideal Resampling 167
18.2 Blow Up 169
18.3 Mip Map 169

V ADVANCED TOPICS 173

19 Color 175
19.1 Simple Biophysical Model 175
19.2 Mathematical Model 180
19.3 Color Matching 183
19.4 Bases 185
19.5 Reflection Modeling 187
19.6 Adaptation 190
19.7 Nonlinear Color 191

Exercises 195

20 What Is Ray Tracing? 197
20.1 Loop Ordering 197
20.2 Intersection 199
20.3 Secondary Rays 201

Exercises 202

21 Light (Technical) 205
21.1 Units 205
21.2 Reflection 210
21.3 Light Simulation 214
21.4 Sensors 221
21.5 Integration Algorithms 222
21.6 More General Effects 224

Exercises 225

22 Geometric Modeling: Basic Intro 227
22.1 Triangle Soup 227
22.2 Meshes 227
22.3 Implicit Surfaces 229
22.4 Volume 231
22.5 Parametric Patches 231
22.6 Subdivision Surfaces 232

Exercises 237



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xi

−1
0
1

Contents xi

23 Animation: Not Even an Introduction 239
23.1 Interpolation 239
23.2 Simulation 241
23.3 Human Locomotion 246

Exercise 246

APPENDIXES 247

A Hello World 2D 249
A.1 APIs 249
A.2 Main Program 250
A.3 Adding Some Interaction 257
A.4 Adding a Texture 259
A.5 What’s Next 261

Exercises 262

B Affine Functions 263
B.1 2D Affine 263
B.2 3D Affine 264
B.3 Going Up 264
B.4 Going Down 265
B.5 Going Sideways 265

Exercises 266

References 267
Index 000



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xii

−1
0
1



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xiii

−1
0
1

Preface

This book developed out of an introductory computer graphics course I have been teaching
at Harvard since 1996. Over the years, I have had the pleasure of teaching many amazing
students. During class, these students have asked many good questions. In light of these
questions, I often realized that some of my explanations in class were a bit sloppy and that
I didn’t fully understand the topic I had just tried to explain. This would often lead me to
rethink the material and change the way I taught it the next time around. Many of these ideas
have found their way into this book. Throughout the course of the book, I cover mostly
standard material but with an emphasis on understanding some of the more subtle concepts
involved.

In this book, we will introduce the basic algorithmic technology needed to produce
three-dimensional (3D) computer graphics. We will cover the basic ideas of how 3D shapes
are represented and moved around algorithmically. We will cover how a camera can be
algorithmically modeled turning this 3D data into a two-dimensional (2D) image made up
of a discrete set of dots, or pixels, on a screen. Later in the book, we will cover some advanced
topics on the basics of color and light representations. We will also briefly introduce some
advanced topics on light simulation for producing photo-realistic images, on various ways
of dealing with geometric representations, and on producing animated computer graphics.

In this book, we include material that is both above and below the API-hood. Much
of the material (especially early on) is stuff you simply need to know to do 3D computer
graphics. But we also spend time to explain what is going on inside of OpenGL. This is
necessary to understand in order to be a highly competent computer graphics programmer.
But also, it is simply fascinating to learn the hows and whys of our amazing computer
graphics computational infrastructure.

We will not cover the hardware and compiler aspects of computer graphics in this book.
We will also not focus on 2D computer graphics or human–computer interfaces. These
topics are all interesting in their own rights but are fairly distinct from the algorithmic side
of 3D computer graphics.

In this book, we structure our explanations around OpenGL, a real-time “rasterization-
based” rendering environment. We have done this (rather than, say, a “ray tracing–based”



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xiv

−1
0
1

xiv Preface

environment) because so much of computer graphics is done in this setting. Anyone, for
example, who works in 3D video games needs to master this material (and more). We have
chosen the OpenGL API (with the GLSL shading language) in particular, as it can be run
on a wide variety of computing platforms.

This book is intended for upper-level computer science/math/physics undergraduate
students with at least a year of programming under their belts and at least a rudimentary
understanding of linear algebra.

For the Professor

In the following paragraphs, I will describe some of the subtle issues that require some care
to get right and are often not taught clearly. I hope that students will master these topics
from this book.

Chapters 2–4: In computer graphics, we need to think about points and vectors from both
a coordinate-free and a coordinate-full approach. We need to use coordinates to obtain a
concrete representation ultimately resulting in our rendered images. But it is often important
to represent and transform our points with respect to different coordinate systems. As such
it is important to

• Distinguish between a geometric point and the coordinates used to represent that point
with respect to some frame.

• Use a notation to explicitly keep track of the basis used for a set of coordinates.

• Distinguish in our notation between matrix equations that represent basis changes and
matrix expressions that represent geometric transformations being applied to points.

This ultimately leads to what we call the left-of rule, which allows us to interpret matrix
expressions and understand with respect to which basis a transformation is acting.

It is our hope that by mastering this explicit notational framework, a student can easily
figure out how to do complicated transformations. This is in contrast to the “try lots of
orderings and inverses of sequences of matrices until the program does the right thing”
approach. One loose inspiration for our approach is the manuscript by Tony DeRose [16].

Chapters 5 and 6: We describe an organized framework for dealing with frames in com-
puter graphics and how this translates into simple 3D OpenGL code. In particular, we derive
useful ways to move objects around using a “mixed auxiliary frame.” This allows us to, say,
rotate an object correctly about its own center but in directions that correspond naturally to
those on the screen.

Chapter 7: This is a simple and straightforward description of the quaternion represen-
tation for rotations. We also derive how properly to combine quaternions and translation
vectors to define a rigid-body transformation data type that multiplies and inverts just like
matrices.



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xv

−1
0
1

Preface xv

Chapter 8: This is a simple and straightforward description of the trackball and arcball
rotation interface. We also show why the trackball interface is mouse path–invariant.

Chapter 9: We do a quick and dirty introduction to Bezier and Catmull–Rom splines.
Chapters 10–13: In these chapters, we describe how camera projection is modeled using

4 by 4 matrices. We also describe the fixed function operations in OpenGL. We pay special
attention to deriving the correct formulas for interpolating the varying variables. Some of
the background on affine functions and interpolation is relegated to appendix B. Many of
the subtleties here are described nicely in essays by Jim Blinn [5]. In these chapters, we do
not cover details about clipping or rasterization algorithms.

Chapters 14 and 15: We give some simple example shaders for diffuse, shiny, and
anisotropic materials. We also point to more advanced real-time rendering techniques
such as multipass rendering and shadow mapping. These sections are admittedly too brief.
Presumably, students pursuing more aggressive rendering projects will need to learn a lot
more about the ever-evolving techniques (and tricks) used in modern real-time rendering.

Chapters 16–18: We cover the basics of why filtering is needed to compute discrete images
and how basis functions are used to reconstruct continuous ones. In particular, we show how
these two concepts need to be combined to do filtering properly during texture mapping (à
la Paul Heckbert’s M.S. thesis [28]). We do not delve into the details of Fourier analysis
here, as we think it would pull us a bit too far off the main narrative (and, in the end, we
use box filters anyway).

Chapter 19: We describe the basic theory of human color perception. From a mathematical
perspective, we attempt to be clear about the very definition of what a color is and why such
things form a linear space. A related treatment to ours can be found in Feynman’s lectures
[20]. For many of the technical issues of color computations, we rely on the color FAQ of
Charles Poynton [58].

Chapter 20: For completeness, we briefly describe ray tracing computations. As this is
not the focus of the course, we only touch on the topic.

Chapter 21: As an introduction to advanced topics in photo-realistic rendering, we do a
careful introduction to the physical units for describing light and to the reflection, rendering,
and measurement equations. One thing we pay close attention to, for example, is why
reflection is measured in the particular units used. A good reference on these basics and
more is Eric Veach’s Ph.D. thesis [71].

Chapter 22: We outline some of the ways that surfaces are modeled and represented in
computer graphics. This is a nontechnical discussion that gives a quick introduction to this
rich topic. We do go into enough detail to be able to implement Catmull–Rom subdivision
surfaces (assuming you have a mesh data structure handy), as these are a quick and easy
way to represent a broad family of surfaces.

Chapter 23: We outline some of the ways animation is done in computer graphics.
Again, this is a nontechnical discussion that gives a quick introduction to this rich topic.



“49265_1P_9270_000.tex” — 1/5/2012 — 14:38 — page xvi

−1
0
1

xvi Preface

One nice place to start for this material is Adrien Treuille’s course on the CMU website
(http://www.cs.cmu.edu/∼15869-f10).

Appendix A: We try to get up and running as painlessly as possible with a first OpenGL
program. Because we will be using a modern version of OpenGL, there is thankfully not
much API left to teach anymore. All OpenGL needs to do is manage the shader programs,
vertex buffer objects, and textures. We do not teach any of the deprecated elements of old
OpenGL, as they are not used in modern computer graphics programming. Appendix A may
be read at any time before chapter 6.

Appendix B: We summarize important facts about affine functions. This is helpful for
reading chapter 12 and essential for reading chapter 13.

This book covers a bit more than what would be possible to do in a one-semester course. It
does not attempt to be an encyclopedic reference to all of the rich topics in computer graphics
theory and practice. Additionally, this book stays close to material in wide use today. We
do not cover the many current research results and ideas that may one day become part of
standard practice.

The website for the book may be found at http://mitpress.mit.edu/foundations.

Aknowledgments

During the development of this book over the past year, I received lots of helpful input from
Hamilton Chong, Guillermo Diez-Canas, and Dylan Thurston.

Helpful advice also came from Julie Dorsey, Hugues Hoppe, Zoe Wood, Yuanchen Zhu,
and Todd Zickler.

Other comments and assistance came from Gilbert Bernstein, Fredo Durand, Ladislav
Kavan, Michael Kazhdan, and Peter-Pike Sloan.

During the development of the course, I was greatly assisted by Xiangfeng Gu, Danil
Kirsanov, Chris Mihelich, Pedro Sander, and Abraham Stone.

Over the years, the course has had many talented students acting as teaching assistants.
They have contributed in many ways to the evolution of this material and include Brad
Andalman, Keith Baldwin, Forrester Cole, Ashley Eden, David Holland, Brad Kittenbrink,
Sanjay Mavinkurve, Jay Moorthi, Doug Nachand, Brian Osserman, Ed Park, David Ryu,
Razvan Surdulescu, and Geetika Tewari.

Finally, I thank my parents for their years of love and support.


