
Foundations of 3D Computer Graphics

Fur

The goal of this assignment is to draw a furry bunny, and perform some simple dynamics simulation
on the fur of the bunny. Fur rendering is achieved by rendering multiple translucent layers of the same
geometry, which we call shells, but with different per-vertex positional offsets.

You will start from the last assignment and add additional material and scene graph nodes to the code.
The starter zip for the assignment contains updated files that you should use to replace the ones you already
have. It also contain new texture file shell.ppm and shaders for rendering the fur. After you have copied
over all the files, make sure to do a make clean (under Linux/MacOSX) or a Build | Clean Solution (under
Visual Studio) to remove old compiled files.

Note that this assignment may take some time to complete, so you are advised to start a day earlier than
normal.

Preparation

You should follow asst8-snippets.cpp to modify your main source file. Be sure to read the comments there
and understand them. The modifications contained in the file will insert code for creating new material,
geometry, and scene graph nodes for drawing the bunny and its furs. Also there is a new GLUT call back
function for “special keys” (specialKeyboard), which you use to handle the keyboard’s arrow keys. Finally
global variables are declared that will help you with doing dynamics simulation later.

Task 1: Rendering Straight Fur

A furry surface is drawn in two stages.

• First the surface itself is drawn (This is the first shape node added as a child to g bunnyNode).

• Next, shells are drawn using the bunny-shell-* shaders. You can see from the snippets that we
we add one child shape node for each shell to g bunnyNode). The ith shape nodes uses the material
g bunyShellMats[i], which has the right opengl blending modes set.

To define the shells, first imagine a single straight hair starting at a vertex positioned at p, and made
up of m straight segments going in the direction of the unit normal N̂ at that vertex, ending at the straight
tip s, as in Figure 1.

s = p + (g furHeight · N̂) (1)

(Note, that N̂ is the “smooth” normal computed at each vertex, not one of the faces “flat” normals.)
A tunable parameter g furHeight defines the total length of the fur: ‖s−p‖. Let n = (s−p)/m. Then

this particular straight hair defines m shell vertex positions, p + in for i = 1, . . . ,m. The ith shell is then
formed by taking the original geometry of the surface, but moving each vertex to its ith shell vertex position.

The code already loads and renders the bunny, but the shells are not shown since their corresponding
geometries have not yet been specified. You want to first finish the updateShellGeometry() function to
specify the shell geometries (g bunnyShellGeometries[]), and then call it at appropriate places to specify
the shell geometries.

1



Note that each item in the array g bunnyShellGeometries is of type shared ptr<SimpleGeometryPNX>.
Compared with the SimpleGeometryPNTBX that we used in previous assignments, each vertex (of type
VertexPNX) in the new geometry carries only position, normal, and a set of texture coordinates.

• When specifying a VertexPNX, since we are first rendering straight furs, you can pass in n defined
above as the normal.

• The texture coordinates of such a VertexPNX are used to lookup the shell texture. Each triangle in the
current shell will access the same portion of the texture, so they will use the same texture coordinates.
You may start mapping each mesh triangle to the unit isosceles triangle in texture coordinates.

Since we are drawing the shells with alpha-blending, it is important that triangles are drawn in a back-to-
front order, (otherwise the alpha blending formula does not make much sense). Sorting all the triangles is a
very expensive operation, but since the bunny is a mostly closed surface, we can take the following shortcut:
Always draw one entire layer of the shell at a time, and do so for each layer, going from the inner-most layer
to the outer-most one. This ensures that things are drawn in roughly the right order.

In our scene graph, children of a transform nodes will always be drawn in the order they are inserted, so
you want to make sure that when you specify the geometries, g bunnyShellGeometries[0] corresponds to
the inner most shell.

You will use the GLUT UP KEY and GLUT DOWN KEY to change the density of the fur (controlled by a variable
called g hairyness). You will implement this by changing the texture coordinates for the triangle. Simply
makes each triangle’s texture coordinates be (0, 0), (g hairyness, 0), and (0, g hairyness). Because we set
the textures to “wrap”, you can use coordinates outside of the 0..1 range. You will use the GLUT LEFT KEY

and GLUT RIGHT KEY to change the length of the fur.

Task 2: Animating Straight Fur

We next want to animate the fur by simulating dynamics. We need to change our definition of the shell
vertex positions a little. Again consider a single hair starting from a vertex positioned at p. We associate
an additional “hair tip” variable t with each hair (and hence each mesh vertex). The hair is now defined as
the straight line going from p to t. Similarly the shell vertex positions are now points on this straight line,
i.e., you should replace s with t in the previous definition of the shell vertex positions.

At the beginning of the program, t is initialized to s (defined in Task 1), which can be interpreted as the
position of the hair tip at rest. Subsequently, t is pushed around by the combination of two forces: a gravity
force pulling t down, and a spring force pulling t back toward the at-rest position s. Since the hair has a
fixed length, we also constrain ‖t− p‖ = g furHeight.

More concretely, t is updated via simple dynamics simulation based on the Euler method. You need to
store a velocity vector v with each tip, initialized to 0. Let T be a “time step” constant. Then each step of
the dynamics simulation is performed as:

1. Compute the total force f acting on the tip. The total force f is the sum of a gravity force (0,−g, 0),
where g is some constant, and a spring force. The spring force will be in the direction of the normalized
(s−t) vector, and has the magnitude (‖s−t‖·stiffness). Thus the spring force is simply ((s−t)·stiffness)

2. Update the tip position: t← t + Tv.

3. Constrain t so that the length ‖t−p‖ = g furHeight. This is achieved by setting t← p+g furHeight·
(t− p)/‖t− p‖.

4. Update the velocity: v ← (v + T f) · damping. The damping parameter will be some number slightly
less than 1.0.

You will perform the above update for each hair inside the hairsSimulationCallback function.
Note that if the time step T (called g timeStep in the code) is too big, the simulation might become

unstable, i.e., the tip position t will move around without ever coming to a rest. On the other hand, if a small
T is used, and only one step of the update is performed inside the hairsSimulationCallback function, and

2



then rendered, your fur might move too slowly. A simple solution is to use a small T , but perform multiple
steps (controlled by g numStepsPerFrame) of update within hairsSimulationCallback before rendering
the result.

It is probably easier to do all the simulation in world space. In particular, the gravity force always points
down with respect to the world frame; Similarly, the coordinate vectors representing t and v should be
defined with respect to the world frame. When you rotate or translate the bunny’s frame do not directly
update t. Instead, only update the “at-rest” hair tip s and the hair origin p, (since we will consider these
points are fixed with respect to the bunny’s frame). Then, the spring force and the hair length constraint
together will force the actual hair tip t to move toward s during the dynamics simulation. In the code, the
world space coordinates of t should be stored in g tipPos[]. The world space coordinates of the hair tip
velocities v should be stored in g tipVelocity[].

On the other hand, when you specify the shells’ geometry, you need to provide the positions and normals
in object coordinates. Thus you may need to do some transformations between world and object coordinates
as needed (Recall our friend getAccumPathRbt(...), but DON’T call it for every vertex! Just call it once
for the object and store the result for later use).

Task 3: Combing Hair (or Curvy Fur)

Right now our fur looks more like little sticks coming out of the bunny. We next want to make the hairs
curved so they look more natural. This requires us to make some further modification to the definition of
shell vertex positions.

We will now think of the hair as a polyline with m segments that starts at p, and ends at t, as opposed
to a straight line going from p to t. Denote the shell vertex positions as p1, . . . ,pm. For convenience, also
denote p0 = p. We want the last shell vertex to coincide with the hair tip, so pm = t and we want the
displacement between subsequent pi’s to satisfy pi+1 − pi = n + id for some constant vector d. You need
to derive this vector d from the above relationships, which then defines the shell vertex points. Figure 1
illustrates these different quantities.

Note that when you render the ith shell (i = 1, . . . ,m), for each vertex you should now use (pi − pi−1)
as the normal for the purpose of shading.

Figure 1: Combing hair: hair-tip at rest is s, but we will bend the hair from the root (p) to get to the current

hair tip (t). Note that n is not the unit normal, just proportional to it (n = (g furHeight/m) · N̂, where

N̂ is the surface normal at p). Note also that the hair length at rest (g furHeight) is ‖m · n‖ = m‖n‖,
which is a free (adjustable) parameter of your model. You choose m, the number of “segments” that the
hair is split into (a value of 15-32 is usually sufficient). Given a unit normal at p, and a value for m, you
can compute n such that m‖n‖ is the desired length of the hair at rest. Then given p, s, t, m, and n, there
is a single d that makes the hair bend to get to the desired hair tip t.

3



Parameters

As you have probably noticed, this assignment involves a lot of tunable parameters, such as the spring
stiffness constant, the gravity, and so on. Suitable constants will produce visually pleasing results. For your
convenience, we already provide default values of these constants as part of asst8-snippets.cpp. They’re
listed below again for convenience.

• g numShells: Number of shell layers, m = 32

• g furHeight = 0.21

• g stiffness = 4

• g damping = 0.96

• g gravity = (0,−0.5, 0), or g = 0.5.

• g timeStep: Time step T = 0.02

• g numStepsPerFrame: Number of simulation steps within hairsSimulationCallback(): 10

Coding Notes

You might find the following points helpful as you write the codes:

• If you are working on windows: you can use the ”Release mode” build to speed up things. If you’re
on Mac or Linux, do a make clean then followed by make OPT=1 to get an optimized build that runs
much faster. You only need to do the make clean once.

• The function updateShellGeometry() is potentially expensive, so you will want to call it only before
rendering, instead of every time in your hairsSimulationCallback(), as hairsSimulationCallback()
might be called at a much higher frequency than your render rates. One way to do so is to have a global
variable bool g shellNeedsUpdate. You always set it to true in hairsSimulationCallback(). Then
in drawStuff, you call updateShellGeometry() only when g shellNeedsUpdate is true. Finally, you
reset it to false within g updateShellGeometry().

• The normalize implementation of cvec will assert upon zero-length vector. You might want change
it so that if the vector is near zero, nothing is done;

4


